home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
SGI Freeware 1998 November
/
Freeware November 1998.img
/
dist
/
fw_emacs.idb
/
usr
/
freeware
/
info
/
emacs-5.z
/
emacs-5
(
.txt
)
Wrap
GNU Info File
|
1998-10-27
|
46KB
|
821 lines
This is Info file ../info/emacs, produced by Makeinfo-1.63 from the
input file emacs.texi.
File: emacs, Node: Rectangles, Next: Registers, Prev: Accumulating Text, Up: Top
Rectangles
==========
The rectangle commands operate on rectangular areas of the text: all
the characters between a certain pair of columns, in a certain range of
lines. Commands are provided to kill rectangles, yank killed rectangles,
clear them out, fill them with blanks or text, or delete them. Rectangle
commands are useful with text in multicolumn formats, and for changing
text into or out of such formats.
When you must specify a rectangle for a command to work on, you do it
by putting the mark at one corner and point at the opposite corner. The
rectangle thus specified is called the "region-rectangle" because you
control it in about the same way the region is controlled. But
remember that a given combination of point and mark values can be
interpreted either as a region or as a rectangle, depending on the
command that uses them.
If point and the mark are in the same column, the rectangle they
delimit is empty. If they are in the same line, the rectangle is one
line high. This asymmetry between lines and columns comes about
because point (and likewise the mark) is between two columns, but within
a line.
`C-x r k'
Kill the text of the region-rectangle, saving its contents as the
"last killed rectangle" (`kill-rectangle').
`C-x r d'
Delete the text of the region-rectangle (`delete-rectangle').
`C-x r y'
Yank the last killed rectangle with its upper left corner at point
(`yank-rectangle').
`C-x r o'
Insert blank space to fill the space of the region-rectangle
(`open-rectangle'). This pushes the previous contents of the
region-rectangle rightward.
`M-x clear-rectangle'
Clear the region-rectangle by replacing its contents with spaces.
`M-x string-rectangle RET STRING RET'
Insert STRING on each line of the region-rectangle.
The rectangle operations fall into two classes: commands deleting and
inserting rectangles, and commands for blank rectangles.
There are two ways to get rid of the text in a rectangle: you can
discard the text (delete it) or save it as the "last killed" rectangle.
The commands for these two ways are `C-x r d' (`delete-rectangle') and
`C-x r k' (`kill-rectangle'). In either case, the portion of each line
that falls inside the rectangle's boundaries is deleted, causing
following text (if any) on the line to move left into the gap.
Note that "killing" a rectangle is not killing in the usual sense;
the rectangle is not stored in the kill ring, but in a special place
that can only record the most recent rectangle killed. This is because
yanking a rectangle is so different from yanking linear text that
different yank commands have to be used and yank-popping is hard to
make sense of.
To yank the last killed rectangle, type `C-x r y'
(`yank-rectangle'). Yanking a rectangle is the opposite of killing
one. Point specifies where to put the rectangle's upper left corner.
The rectangle's first line is inserted there, the rectangle's second
line is inserted at a position one line vertically down, and so on. The
number of lines affected is determined by the height of the saved
rectangle.
You can convert single-column lists into double-column lists using
rectangle killing and yanking; kill the second half of the list as a
rectangle and then yank it beside the first line of the list. *Note
Two-Column::, for another way to edit multi-column text.
You can also copy rectangles into and out of registers with `C-x r r
R' and `C-x r i R'. *Note Rectangle Registers: RegRect.
There are two commands for making with blank rectangles: `M-x
clear-rectangle' to blank out existing text, and `C-x r o'
(`open-rectangle') to insert a blank rectangle. Clearing a rectangle
is equivalent to deleting it and then inserting a blank rectangle of
the same size.
The command `M-x string-rectangle' is similar to `C-x r o', but it
inserts a specified string instead of blanks. You specify the string
with the minibuffer. Since the length of the string specifies how many
columns to insert, the width of the region-rectangle does not matter
for this command. What does matter is the position of the left edge
(which specifies the column position for the insertion in each line)
and the range of lines that the rectangle occupies. The previous
contents of the text beyond the insertion column are pushed rightward.
File: emacs, Node: Registers, Next: Display, Prev: Rectangles, Up: Top
Registers
*********
Emacs "registers" are places you can save text or positions for
later use. Once you save text or a rectangle in a register, you can
copy it into the buffer once or many times; you can move point to a
position saved in a register once or many times.
Each register has a name which is a single character. A register can
store a piece of text, a rectangle, a position, a window configuration,
or a file name, but only one thing at any given time. Whatever you
store in a register remains there until you store something else in that
register. To see what a register R contains, use `M-x view-register'.
`M-x view-register RET R'
Display a description of what register R contains.
* Menu:
* Position: RegPos. Saving positions in registers.
* Text: RegText. Saving text in registers.
* Rectangle: RegRect. Saving rectangles in registers.
* Configurations: RegConfig. Saving window configurations in registers.
* Files: RegFiles. File names in registers.
* Bookmarks:: Bookmarks are like registers, but persistent.
File: emacs, Node: RegPos, Next: RegText, Up: Registers
Saving Positions in Registers
=============================
Saving a position records a place in a buffer so that you can move
back there later. Moving to a saved position switches to that buffer
and moves point to that place in it.
`C-x r SPC R'
Save position of point in register R (`point-to-register').
`C-x r j R'
Jump to the position saved in register R (`jump-to-register').
To save the current position of point in a register, choose a name R
and type `C-x r SPC R'. The register R retains the position thus saved
until you store something else in that register.
The command `C-x r j R' moves point to the position recorded in
register R. The register is not affected; it continues to record the
same position. You can jump to the saved position any number of times.
File: emacs, Node: RegText, Next: RegRect, Prev: RegPos, Up: Registers
Saving Text in Registers
========================
When you want to insert a copy of the same piece of text several
times, it may be inconvenient to yank it from the kill ring, since each
subsequent kill moves that entry further down the ring. An alternative
is to store the text in a register and later retrieve it.
`C-x r s R'
Copy region into register R (`copy-to-register').
`C-x r i R'
Insert text from register R (`insert-register').
`C-x r s R' stores a copy of the text of the region into the
register named R. Given a numeric argument, `C-x r s R' deletes the
text from the buffer as well.
`C-x r i R' inserts in the buffer the text from register R.
Normally it leaves point before the text and places the mark after, but
with a numeric argument (`C-u') it puts point after the text and the
mark before.
File: emacs, Node: RegRect, Next: RegConfig, Prev: RegText, Up: Registers
Saving Rectangles in Registers
==============================
A register can contain a rectangle instead of linear text. The
rectangle is represented as a list of strings. *Note Rectangles::, for
basic information on how to specify a rectangle in the buffer.
`C-x r r R'
Copy the region-rectangle into register R
(`copy-rectangle-to-register'). With numeric argument, delete it
as well.
`C-x r i R'
Insert the rectangle stored in register R (if it contains a
rectangle) (`insert-register').
The `C-x r i R' command inserts a text string if the register
contains one, and inserts a rectangle if the register contains one.
See also the command `sort-columns', which you can think of as
sorting a rectangle. *Note Sorting::.
File: emacs, Node: RegConfig, Next: RegFiles, Prev: RegRect, Up: Registers
Saving Window Configurations in Registers
=========================================
You can save the window configuration of the selected frame in a
register, or even the configuration of all windows in all frames, and
restore the configuration later.
`C-x r w R'
Save the state of the selected frame's windows in register R
(`window-configuration-to-register').
`C-x r f R'
Save the state of all frames, including all their windows, in
register R (`frame-configuration-to-register').
Use `C-x r j R' to restore a window or frame configuration. This is
the same command used to restore a cursor position. When you restore a
frame configuration, any existing frames not included in the
configuration become invisible. If you wish to delete these frames
instead, use `C-u C-x r j R'.
File: emacs, Node: RegFiles, Next: Bookmarks, Prev: RegConfig, Up: Registers
Keeping File Names in Registers
===============================
If you visit certain file names frequently, you can visit them more
conveniently if you put their names in registers. Here's the Lisp code
used to put a file name in a register:
(set-register ?R '(file . NAME))
For example,
(set-register ?z '(file . "/gd/gnu/emacs/19.0/src/ChangeLog"))
puts the file name shown in register `z'.
To visit the file whose name is in register R, type `C-x r j R'.
(This is the same command used to jump to a position or restore a frame
configuration.)
File: emacs, Node: Bookmarks, Prev: RegFiles, Up: Registers
Bookmarks
=========
"Bookmarks" are somewhat like registers in that they record
positions you can jump to. Unlike registers, they have long names, and
they persist automatically from one Emacs session to the next. The
prototypical use of bookmarks is to record "where you were reading" in
various files.
`C-x r m RET'
Set the bookmark for the visited file, at point.
`C-x r m BOOKMARK RET'
Set the bookmark named BOOKMARK at point (`bookmark-set').
`C-x r b BOOKMARK RET'
Jump to the bookmark named BOOKMARK (`bookmark-jump').
`C-x r l'
List all bookmarks (`list-bookmarks').
`M-x bookmark-save'
Save all the current bookmark values in the default bookmark file.
The prototypical use for bookmarks is to record one current position
in each of several files. So the command `C-x r m', which sets a
bookmark, uses the visited file name as the default for the bookmark
name. If you name each bookmark after the file it points to, then you
can conveniently revisit any of those files with `C-x r b', and move to
the position of the bookmark at the same time.
To display a list of all your bookmarks in a separate buffer, type
`C-x r l' (`list-bookmarks'). If you switch to that buffer, you can
use it to edit your bookmark definitions or annotate the bookmarks.
Type `C-h m' in that buffer for more information about its special
editing commands.
When you kill Emacs, Emacs offers to save your bookmark values in
your default bookmark file, `~/.emacs.bmk', if you have changed any
bookmark values. You can also save the bookmarks at any time with the
`M-x bookmark-save' command. The bookmark commands load your default
bookmark file automatically. This saving and loading is how bookmarks
persist from one Emacs session to the next.
If you set the variable `bookmark-save-flag' to 1, then each command
that sets a bookmark will also save your bookmarks; this way, you don't
lose any bookmark values even if Emacs crashes. (The value, if a
number, says how many bookmark modifications should go by between
saving.)
Bookmark position values are saved with surrounding context, so that
`bookmark-jump' can find the proper position even if the file is
modified slightly. The variable `bookmark-search-size' says how many
characters of context to record, on each side of the bookmark's
position.
Here are some additional commands for working with bookmarks:
`M-x bookmark-load RET FILENAME RET'
Load a file named FILENAME that contains a list of bookmark
values. You can use this command, as well as `bookmark-write', to
work with other files of bookmark values in addition to your
default bookmark file.
`M-x bookmark-write RET FILENAME RET'
Save all the current bookmark values in the file FILENAME.
`M-x bookmark-delete RET BOOKMARK RET'
Delete the bookmark named BOOKMARK.
`M-x bookmark-insert-location RET BOOKMARK RET'
Insert in the buffer the name of the file that bookmark BOOKMARK
points to.
`M-x bookmark-insert RET BOOKMARK RET'
Insert in the buffer the *contents* of the file that bookmark
BOOKMARK points to.
File: emacs, Node: Display, Next: Search, Prev: Registers, Up: Top
Controlling the Display
***********************
Since only part of a large buffer fits in the window, Emacs tries to
show the part that is likely to be interesting. The display control
commands allow you to specify which part of the text you want to see.
`C-l'
Clear screen and redisplay, scrolling the selected window to center
point vertically within it (`recenter').
`C-v'
Scroll forward (a windowful or a specified number of lines)
(`scroll-up').
`NEXT'
Likewise, scroll forward.
`M-v'
Scroll backward (`scroll-down').
`PRIOR'
Likewise, scroll backward.
`ARG C-l'
Scroll so point is on screen line ARG (`recenter').
`C-x <'
Scroll text in current window to the left (`scroll-left').
`C-x >'
Scroll to the right (`scroll-right').
`C-x $'
Make deeply indented lines invisible (`set-selective-display').
The names of all scroll commands are based on the direction that the
text moves in the window. Thus, the command to scrolling forward is
called `scroll-up', since the text moves up.
* Menu:
* Scrolling:: Moving text up and down in a window.
* Horizontal Scrolling:: Moving text left and right in a window.
* Selective Display:: Hiding lines with lots of indentation.
* European Display:: Displaying (and entering) European characters.
* Follow Mode:: Follow mode lets two windows scroll as one.
* Optional Mode Line:: Optional mode line display features.
* Display Vars:: Information on variables for customizing display.
File: emacs, Node: Scrolling, Next: Horizontal Scrolling, Up: Display
Scrolling
=========
If a buffer contains text that is too large to fit entirely within a
window that is displaying the buffer, Emacs shows a contiguous portion
of the text. The portion shown always contains point.
"Scrolling" means moving text up or down in the window so that
different parts of the text are visible. Scrolling forward means that
text moves up, and new text appears at the bottom. Scrolling backward
moves text down and new text appears at the top.
Scrolling happens automatically if you move point past the bottom or
top of the window. You can also explicitly request scrolling with the
commands in this section.
`C-l'
Clear screen and redisplay, scrolling the selected window to center
point vertically within it (`recenter').
`C-v'
Scroll forward (a windowful or a specified number of lines)
(`scroll-up').
`NEXT'
Likewise, scroll forward.
`M-v'
Scroll backward (`scroll-down').
`PRIOR'
Likewise, scroll backward.
`ARG C-l'
Scroll so point is on line ARG (`recenter').
`C-M-l'
Scroll heuristically to bring useful information onto the screen
(`reposition-window').
The most basic scrolling command is `C-l' (`recenter') with no
argument. It clears the entire screen and redisplays all windows. In
addition, it scrolls the selected window so that point is halfway down
from the top of the window.
The scrolling commands `C-v' and `M-v' let you move all the text in
the window up or down a few lines. `C-v' (`scroll-up') with an
argument shows you that many more lines at the bottom of the window,
moving the text and point up together as `C-l' might. `C-v' with a
negative argument shows you more lines at the top of the window. `M-v'
(`scroll-down') is like `C-v', but moves in the opposite direction.
The function keys NEXT and PRIOR are equivalent to `C-v' and `M-v'.
To read the buffer a windowful at a time, use `C-v' with no argument.
It takes the last two lines at the bottom of the window and puts them at
the top, followed by nearly a whole windowful of lines not previously
visible. If point was in the text scrolled off the top, it moves to the
new top of the window. `M-v' with no argument moves backward with
overlap similarly. The number of lines of overlap across a `C-v' or
`M-v' is controlled by the variable `next-screen-context-lines'; by
default, it is two.
Another way to do scrolling is with `C-l' with a numeric argument.
`C-l' does not clear the screen when given an argument; it only scrolls
the selected window. With a positive argument N, it repositions text
to put point N lines down from the top. An argument of zero puts point
on the very top line. Point does not move with respect to the text;
rather, the text and point move rigidly on the screen. `C-l' with a
negative argument puts point that many lines from the bottom of the
window. For example, `C-u - 1 C-l' puts point on the bottom line, and
`C-u - 5 C-l' puts it five lines from the bottom. Just `C-u' as
argument, as in `C-u C-l', scrolls point to the center of the screen.
The `C-M-l' command (`reposition-window') scrolls the current window
heuristically in a way designed to get useful information onto the
screen. For example, in a Lisp file, this command tries to get the
entire current defun onto the screen if possible.
Scrolling happens automatically if point has moved out of the visible
portion of the text when it is time to display. Usually the scrolling
is done so as to put point vertically centered within the window.
However, if the variable `scroll-step' has a nonzero value, an attempt
is made to scroll the buffer by that many lines; if that is enough to
bring point back into visibility, that is what is done.
File: emacs, Node: Horizontal Scrolling, Next: Selective Display, Prev: Scrolling, Up: Display
Horizontal Scrolling
====================
`C-x <'
Scroll text in current window to the left (`scroll-left').
`C-x >'
Scroll to the right (`scroll-right').
The text in a window can also be scrolled horizontally. This means
that each line of text is shifted sideways in the window, and one or
more characters at the beginning of each line are not displayed at all.
When a window has been scrolled horizontally in this way, text lines
are truncated rather than continued (*note Continuation Lines::.), with
a `$' appearing in the first column when there is text truncated to the
left, and in the last column when there is text truncated to the right.
The command `C-x <' (`scroll-left') scrolls the selected window to
the left by N columns with argument N. This moves part of the
beginning of each line off the left edge of the window. With no
argument, it scrolls by almost the full width of the window (two
columns less, to be precise).
`C-x >' (`scroll-right') scrolls similarly to the right. The window
cannot be scrolled any farther to the right once it is displayed
normally (with each line starting at the window's left margin);
attempting to do so has no effect. This means that you don't have to
calculate the argument precisely for `C-x >'; any sufficiently large
argument will restore normally display.
File: emacs, Node: Selective Display, Next: European Display, Prev: Horizontal Scrolling, Up: Display
Selective Display
=================
Emacs has the ability to hide lines indented more than a certain
number of columns (you specify how many columns). You can use this to
get an overview of a part of a program.
To hide lines, type `C-x $' (`set-selective-display') with a numeric
argument N. Then lines with at least N columns of indentation
disappear from the screen. The only indication of their presence is
that three dots (`...') appear at the end of each visible line that is
followed by one or more hidden ones.
The commands `C-n' and `C-p' move across the hidden lines as if they
were not there.
The hidden lines are still present in the buffer, and most editing
commands see them as usual, so you may find point in the middle of the
hidden text. When this happens, the cursor appears at the end of the
previous line, after the three dots. If point is at the end of the
visible line, before the newline that ends it, the cursor appears before
the three dots.
To make all lines visible again, type `C-x $' with no argument.
If you set the variable `selective-display-ellipses' to `nil', the
three dots do not appear at the end of a line that precedes hidden
lines. Then there is no visible indication of the hidden lines. This
variable becomes local automatically when set.
File: emacs, Node: European Display, Next: Follow Mode, Prev: Selective Display, Up: Display
European Character Set Display
==============================
Some European languages use accented letters and other special
symbols. The ISO 8859 Latin-1 character set defines character codes for
many European languages in the range 160 to 255.
Emacs can display those characters according to Latin-1, provided the
terminal or font in use supports them. The `M-x
standard-display-european' command toggles European character display
mode. With a numeric argument, `M-x standard-display-european' enables
European character display if and only if the argument is positive.
Load the library `iso-syntax' to specify the correct syntactic
properties and case conversion table for the Latin-1 character set.
If your terminal does not support display of the Latin-1 character
set, Emacs can display these characters as ASCII sequences which at
least give you a clear idea of what the characters are. To do this,
load the library `iso-ascii'.
Some operating systems let you specify the language you are using by
setting a locale. Emacs handles one common special case of this: if
your locale name for character types contains the string `8859-1' or
`88591', Emacs automatically enables European character display mode
and its syntax.
There are three different ways you can enter Latin-1 characters:
* If your keyboard can generate character codes 128 and up,
representing ISO Latin-1 characters, execute the following
expression to enable Emacs to understand them:
(set-input-mode (car (current-input-mode))
(nth 1 (current-input-mode))
0)
* You can load the library `iso-transl' to turn the key `C-x 8' into
a "compose character" prefix for entry of the extra ISO Latin-1
printing characters. `C-x 8' is good for insertion (in the
minibuffer as well as other buffers), for searching, and in any
other context where a key sequence is allowed. The ALT modifier
key, if you have one, serves the same purpose as `C-x 8'; use ALT
together with an accent character to modify the following letter.
* You can use ISO Accents mode. This minor mode is convenient if you
enter non-ASCII ISO Latin-1 characters often. When this minor
mode is enabled, the characters ``', `'', `"', `^', `/' and `~'
modify the following letter by adding the corresponding
diacritical mark to it, if possible. To enable or disable ISO
Accents mode, use the command `M-x iso-accents-mode'. This
command affects only the current buffer.
To enter one of those six special characters while in ISO Accents
mode, type the character, followed by a space. Some of those
characters have a corresponding "dead key" accent character in the
ISO Latin-1 character set; to enter that character, type the
corresponding ASCII character twice. For example, `''' enters the
Latin-1 character acute-accent (character code 0264).
ISO Accents mode input is available whenever a key sequence is
expected: for ordinary insertion, for searching, for the
minibuffer, and for certain command arguments.
In addition to the accented letters, you can use these special
sequences in ISO Accents mode to enter certain other ISO Latin-1
characters:
`/A'
`A' with ring.
`~C'
`C' with cedilla.
`~D'
`D' with stroke.
`/E'
`AE' ligature.
`/a'
`a' with ring.
`~c'
`c' with cedilla.
`~d'
`d' with stroke.
`/e'
`ae' ligature.
`"s'
German sharp `s'.
`~<'
Left guillemot.
`~>'
Right guillemot.
`~!'
Inverted exclamation mark.
`~?'
Inverted question mark.
File: emacs, Node: Follow Mode, Next: Optional Mode Line, Prev: European Display, Up: Display
Follow Mode
===========
"Follow mode" is a minor mode which makes two windows showing the
same buffer scroll as one tall "virtual window." To use Follow mode,
go to a frame with just one window, split it into two side-by-side
windows using `C-x 3', and then type `M-x follow-mode'. From then on,
you can edit the buffer in either of the two windows, or scroll either
one; the other window follows it.
To turn off Follow mode, type `M-x follow-mode' a second time.
File: emacs, Node: Optional Mode Line, Next: Display Vars, Prev: Follow Mode, Up: Display
Optional Mode Line Features
===========================
The current line number of point appears in the mode line when Line
Number mode is enabled. Use the command `M-x line-number-mode' to turn
this mode on and off; normally it is on. The line number appears
before the buffer percentage POS, with the letter `L' to indicate what
it is. *Note Minor Modes::, for more information about minor modes and
about how to use this command.
If the buffer is very large (larger than the value of
`line-number-display-limit'), then the line number doesn't appear.
Emacs doesn't compute the line number when the buffer is large, because
that would be too slow. If you have narrowed the buffer (*note
Narrowing::.), the displayed line number is relative to the accessible
portion of the buffer.
You can also display the current column number by turning on Column
Number mode. It displays the current column number preceded by the
letter `C'. Type `M-x column-number-mode' to toggle this mode.
Emacs can optionally display the time and system load in all mode
lines. To enable this feature, type `M-x display-time'. The
information added to the mode line usually appears after the buffer
name, before the mode names and their parentheses. It looks like this:
HH:MMpm L.LL
Here HH and MM are the hour and minute, followed always by `am' or
`pm'. L.LL is the average number of running processes in the whole
system recently. (Some fields may be missing if your operating system
cannot support them.)
The word `Mail' appears after the load level if there is mail for
you that you have not read yet.
File: emacs, Node: Display Vars, Prev: Optional Mode Line, Up: Display
Variables Controlling Display
=============================
This section contains information for customization only. Beginning
users should skip it.
The variable `mode-line-inverse-video' controls whether the mode
line is displayed in inverse video (assuming the terminal supports it);
`nil' means don't do so. *Note Mode Line::. If you specify the
foreground color for the `modeline' face, and `mode-line-inverse-video'
is non-`nil', then the default background color for that face is the
usual foreground color. *Note Faces::.
If the variable `inverse-video' is non-`nil', Emacs attempts to
invert all the lines of the display from what they normally are.
If the variable `visible-bell' is non-`nil', Emacs attempts to make
the whole screen blink when it would normally make an audible bell
sound. This variable has no effect if your terminal does not have a way
to make the screen blink.
When you reenter Emacs after suspending, Emacs normally clears the
screen and redraws the entire display. On some terminals with more than
one page of memory, it is possible to arrange the termcap entry so that
the `ti' and `te' strings (output to the terminal when Emacs is entered
and exited, respectively) switch between pages of memory so as to use
one page for Emacs and another page for other output. Then you might
want to set the variable `no-redraw-on-reenter' non-`nil'; this tells
Emacs to assume, when resumed, that the screen page it is using still
contains what Emacs last wrote there.
The variable `echo-keystrokes' controls the echoing of
multi-character keys; its value is the number of seconds of pause
required to cause echoing to start, or zero meaning don't echo at all.
*Note Echo Area::.
If the variable `ctl-arrow' is `nil', control characters in the
buffer are displayed with octal escape sequences, all except newline
and tab. Altering the value of `ctl-arrow' makes it local to the
current buffer; until that time, the default value is in effect. The
default is initially `t'. *Note Display Tables: (elisp)Display Tables.
Normally, a tab character in the buffer is displayed as whitespace
which extends to the next display tab stop position, and display tab
stops come at intervals equal to eight spaces. The number of spaces
per tab is controlled by the variable `tab-width', which is made local
by changing it, just like `ctl-arrow'. Note that how the tab character
in the buffer is displayed has nothing to do with the definition of TAB
as a command. The variable `tab-width' must have an integer value
between 1 and 1000, inclusive.
If the variable `truncate-lines' is non-`nil', then each line of
text gets just one screen line for display; if the text line is too
long, display shows only the part that fits. If `truncate-lines' is
`nil', then long text lines display as more than one screen line,
enough to show the whole text of the line. *Note Continuation Lines::.
Altering the value of `truncate-lines' makes it local to the current
buffer; until that time, the default value is in effect. The default
is initially `nil'.
If the variable `truncate-partial-width-windows' is non-`nil', it
forces truncation rather than continuation in any window less than the
full width of the screen or frame, regardless of the value of
`truncate-lines'. For information about side-by-side windows, see
*Note Split Window::. See also *Note Display: (elisp)Display.
The variable `baud-rate' holds the the output speed of the terminal,
as far as Emacs knows. Setting this variable does not change the speed
of actual data transmission, but the value is used for calculations
such as padding. It also affects decisions about whether to scroll
part of the screen or redraw it instead--even when using a window
system. (We designed it this way, despite the fact that a window
system has no true "output speed", to give you a way to tune these
decisions.)
File: emacs, Node: Search, Next: Fixit, Prev: Display, Up: Top
Searching and Replacement
*************************
Like other editors, Emacs has commands for searching for occurrences
of a string. The principal search command is unusual in that it is
"incremental"; it begins to search before you have finished typing the
search string. There are also nonincremental search commands more like
those of other editors.
Besides the usual `replace-string' command that finds all
occurrences of one string and replaces them with another, Emacs has a
fancy replacement command called `query-replace' which asks
interactively which occurrences to replace.
* Menu:
* Incremental Search:: Search happens as you type the string.
* Nonincremental Search:: Specify entire string and then search.
* Word Search:: Search for sequence of words.
* Regexp Search:: Search for match for a regexp.
* Regexps:: Syntax of regular expressions.
* Search Case:: To ignore case while searching, or not.
* Replace:: Search, and replace some or all matches.
* Other Repeating Search:: Operating on all matches for some regexp.
File: emacs, Node: Incremental Search, Next: Nonincremental Search, Prev: Search, Up: Search
Incremental Search
==================
An incremental search begins searching as soon as you type the first
character of the search string. As you type in the search string, Emacs
shows you where the string (as you have typed it so far) would be
found. When you have typed enough characters to identify the place you
want, you can stop. Depending on what you plan to do next, you may or
may not need to terminate the search explicitly with RET.
`C-s'
Incremental search forward (`isearch-forward').
`C-r'
Incremental search backward (`isearch-backward').
`C-s' starts an incremental search. `C-s' reads characters from the
keyboard and positions the cursor at the first occurrence of the
characters that you have typed. If you type `C-s' and then `F', the
cursor moves right after the first `F'. Type an `O', and see the
cursor move to after the first `FO'. After another `O', the cursor is
after the first `FOO' after the place where you started the search.
Meanwhile, the search string `FOO' has been echoed in the echo area.
If you make a mistake in typing the search string, you can cancel
characters with DEL. Each DEL cancels the last character of search
string. This does not happen until Emacs is ready to read another
input character; first it must either find, or fail to find, the
character you want to erase. If you do not want to wait for this to
happen, use `C-g' as described below.
When you are satisfied with the place you have reached, you can type
RET, which stops searching, leaving the cursor where the search brought
it. Also, any command not specially meaningful in searches stops the
searching and is then executed. Thus, typing `C-a' would exit the
search and then move to the beginning of the line. RET is necessary
only if the next command you want to type is a printing character, DEL,
RET, or another control character that is special within searches
(`C-q', `C-w', `C-r', `C-s', `C-y', `M-y', `M-r', or `M-s').
Sometimes you search for `FOO' and find it, but not the one you
expected to find. There was a second `FOO' that you forgot about,
before the one you were looking for. In this event, type another `C-s'
to move to the next occurrence of the search string. This can be done
any number of times. If you overshoot, you can cancel some `C-s'
characters with DEL.
After you exit a search, you can search for the same string again by
typing just `C-s C-s': the first `C-s' is the key that invokes
incremental search, and the second `C-s' means "search again".
To reuse earlier search strings, use the "search ring". The
commands `M-p' and `M-n' move through the ring to pick a search string
to reuse. These commands leave the selected search ring element in the
minibuffer, where you can edit it. Type `C-s' or `C-r' to terminate
editing the string and search for it.
If your string is not found at all, the echo area says `Failing
I-Search'. The cursor is after the place where Emacs found as much of
your string as it could. Thus, if you search for `FOOT', and there is
no `FOOT', you might see the cursor after the `FOO' in `FOOL'. At this
point there are several things you can do. If your string was
mistyped, you can rub some of it out and correct it. If you like the
place you have found, you can type RET or some other Emacs command to
"accept what the search offered". Or you can type `C-g', which removes
from the search string the characters that could not be found (the `T'
in `FOOT'), leaving those that were found (the `FOO' in `FOOT'). A
second `C-g' at that point cancels the search entirely, returning point
to where it was when the search started.
An upper-case letter in the search string makes the search
case-sensitive. If you delete the upper-case character from the search
string, it ceases to have this effect. *Note Search Case::.
If a search is failing and you ask to repeat it by typing another
`C-s', it starts again from the beginning of the buffer. Repeating a
failing reverse search with `C-r' starts again from the end. This is
called "wrapping around". `Wrapped' appears in the search prompt once
this has happened. If you keep on going past the original starting
point of the search, it changes to `Overwrapped', which means that you
are revisiting matches that you have already seen.
The `C-g' "quit" character does special things during searches; just
what it does depends on the status of the search. If the search has
found what you specified and is waiting for input, `C-g' cancels the
entire search. The cursor moves back to where you started the search.
If `C-g' is typed when there are characters in the search string that
have not been found--because Emacs is still searching for them, or
because it has failed to find them--then the search string characters
which have not been found are discarded from the search string. With
them gone, the search is now successful and waiting for more input, so
a second `C-g' will cancel the entire search.
To search for a newline, type LFD (also known as `C-j'). To search
for another control character such as control-S or carriage return, you
must quote it by typing `C-q' first. This function of `C-q' is
analogous to its meaning as an Emacs command: it causes the following
character to be treated the way a graphic character would normally be
treated in the same context. You can also specify a character by its
octal code: enter `C-q' followed by three octal digits.
You can change to searching backwards with `C-r'. If a search fails
because the place you started was too late in the file, you should do
this. Repeated `C-r' keeps looking for more occurrences backwards. A
`C-s' starts going forwards again. `C-r' in a search can be canceled
with DEL.
If you know initially that you want to search backwards, you can use
`C-r' instead of `C-s' to start the search, because `C-r' as a key runs
a command (`isearch-backward') to search backward.
The characters `C-y' and `C-w' can be used in incremental search to
grab text from the buffer into the search string. This makes it
convenient to search for another occurrence of text at point. `C-w'
copies the word after point as part of the search string, advancing
point over that word. Another `C-s' to repeat the search will then
search for a string including that word. `C-y' is similar to `C-w' but
copies all the rest of the current line into the search string. Both
`C-y' and `C-w' convert the text they copy to lower case if the search
is current not case-sensitive; this is so the search remains
case-insensitive.
The character `M-y' copies text from the kill ring into the search
string. It uses the same text that `C-y' as a command would yank.
*Note Yanking::.
When you exit the incremental search, it sets the mark to where point
*was*, before the search. That is convenient for moving back there.
In Transient Mark mode, incremental search sets the mark without
activating it, and does so only if the mark is not already active.
To customize the special characters that incremental search
understands, alter their bindings in the keymap `isearch-mode-map'.
For a list of bindings, look at the documentation of `isearch-mode' with
`C-h f isearch-mode RET'.
Slow Terminal Incremental Search
--------------------------------
Incremental search on a slow terminal uses a modified style of
display that is designed to take less time. Instead of redisplaying
the buffer at each place the search gets to, it creates a new
single-line window and uses that to display the line that the search
has found. The single-line window comes into play as soon as point
gets outside of the text that is already on the screen.
When you terminate the search, the single-line window is removed.
Then Emacs redisplays the window in which the search was done, to show
its new position of point.
The slow terminal style of display is used when the terminal baud
rate is less than or equal to the value of the variable
`search-slow-speed', initially 1200.
The number of lines to use in slow terminal search display is
controlled by the variable `search-slow-window-lines'. 1 is its normal
value.
File: emacs, Node: Nonincremental Search, Next: Word Search, Prev: Incremental Search, Up: Search
Nonincremental Search
=====================
Emacs also has conventional nonincremental search commands, which
require you to type the entire search string before searching begins.
`C-s RET STRING RET'
Search for STRING.
`C-r RET STRING RET'
Search backward for STRING.
To do a nonincremental search, first type `C-s RET'. This enters
the minibuffer to read the search string; terminate the string with
RET, and then the search takes place. If the string is not found, the
search command gets an error.
The way `C-s RET' works is that the `C-s' invokes incremental
search, which is specially programmed to invoke nonincremental search
if the argument you give it is empty. (Such an empty argument would
otherwise be useless.) `C-r RET' also works this way.
However, nonincremental searches performed using `C-s RET' do not
call `search-forward' right away. The first thing done is to see if
the next character is `C-w', which requests a word search. *Note Word
Search::.
Forward and backward nonincremental searches are implemented by the
commands `search-forward' and `search-backward'. These commands may be
bound to keys in the usual manner. The feature that you can get to
them via the incremental search commands exists for historical reasons,
and to avoid the need to find suitable key sequences for them.
File: emacs, Node: Word Search, Next: Regexp Search, Prev: Nonincremental Search, Up: Search
Word Search
===========
Word search searches for a sequence of words without regard to how
the words are separated. More precisely, you type a string of many
words, using single spaces to separate them, and the string can be
found even if there are multiple spaces, newlines or other punctuation
between the words.
Word search is useful for editing a printed document made with a text
formatter. If you edit while looking at the printed, formatted version,
you can't tell where the line breaks are in the source file. With word
search, you can search without having to know them.
`C-s RET C-w WORDS RET'
Search for WORDS, ignoring details of punctuation.
`C-r RET C-w WORDS RET'
Search backward for WORDS, ignoring details of punctuation.
Word search is a special case of nonincremental search and is invoked
with `C-s RET C-w'. This is followed by the search string, which must
always be terminated with RET. Being nonincremental, this search does
not start until the argument is terminated. It works by constructing a
regular expression and searching for that; see *Note Regexp Search::.
Use `C-r RET C-w' to do backward word search.
Forward and backward word searches are implemented by the commands
`word-search-forward' and `word-search-backward'. These commands may
be bound to keys in the usual manner. The feature that you can get to
them via the incremental search commands exists for historical reasons,
and to avoid the need to find suitable key sequences for them.
File: emacs, Node: Regexp Search, Next: Regexps, Prev: Word Search, Up: Search
Regular Expression Search
=========================
A "regular expression" ("regexp", for short) is a pattern that
denotes a class of alternative strings to match, possibly infinitely
many. In GNU Emacs, you can search for the next match for a regexp
either incrementally or not.
Incremental search for a regexp is done by typing `C-M-s'
(`isearch-forward-regexp'). This command reads a search string
incrementally just like `C-s', but it treats the search string as a
regexp rather than looking for an exact match against the text in the
buffer. Each time you add text to the search string, you make the
regexp longer, and the new regexp is searched for. To search backward
in the buffer, use `C-M-r' (`isearch-backward-regexp').
All of the control characters that do special things within an
ordinary incremental search have the same function in incremental regexp
search. Typing `C-s' or `C-r' immediately after starting the search
retrieves the last incremental search regexp used; that is to say,
incremental regexp and non-regexp searches have independent defaults.
They also have separate search rings that you can access with `M-p' and
`M-n'.
If you type SPC in incremental regexp search, it matches any
sequence of whitespace characters, including newlines. If you want to
match just a space, type `C-q SPC'.
Note that adding characters to the regexp in an incremental regexp
search can make the cursor move back and start again. For example, if
you have searched for `foo' and you add `\|bar', the cursor backs up in
case the first `bar' precedes the first `foo'.
Nonincremental search for a regexp is done by the functions
`re-search-forward' and `re-search-backward'. You can invoke these
with `M-x', or bind them to keys, or invoke them by way of incremental
regexp search with `C-M-s RET' and `C-M-r RET'.